North West Adelaide Health Study - Obesity

Dr Sarah Appleton

Research Fellow

The Health Observatory, TQEH
- Obesity increases the risks for chronic conditions
- single biggest threat to public health in Australia
Obesity in Australia

- 1995 ABS National Nutrition Survey
- 2007-08 ABS National Health Survey

Taken from Overweight and Obesity in Adults in Australia: A Snapshot (cat. no. 4842.0.55.001).

<table>
<thead>
<tr>
<th></th>
<th>stage 1</th>
<th>stage 2</th>
<th>stage 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>underweight</td>
<td>1.2</td>
<td>1.3</td>
<td>8.8</td>
</tr>
<tr>
<td>normal</td>
<td>35.5</td>
<td>31.9</td>
<td>26.7</td>
</tr>
<tr>
<td>overweight</td>
<td>36.3</td>
<td>37.4</td>
<td>39</td>
</tr>
<tr>
<td>obese</td>
<td>27</td>
<td>29.4</td>
<td>33.4</td>
</tr>
</tbody>
</table>
Obesity Trends* Among U.S. Adults
BRFSS, 1990, 2000, 2010
(*BMI ≥30 kg/m²)

- In 2009–2010, 35.7% of U.S. adults were obese
- No change from 2003-2008

from http://www.cdc.gov/obesity/data/adult.html
Metabolically healthy obese (MHO) phenotype

- normal metabolic parameters despite elevated body mass index (BMI)
- 10-15% of population samples
- The longitudinal course of this phenotype is not well-described
- follow-up: conflicting results regarding mortality outcomes
- CVD risk attributable to obesity requires the concomitant presence of metabolic risk factors
- Framingham Offspring study reported a borderline increased risk of developing diabetes over an 11 year period.
- Outcomes in the MHO may be related to differences in
 - body composition (less visceral and hepatic fat),
 - fitness
 - inflammatory profiles
Methods

Study population

- 3743 stage 1 participants free of cardiovascular disease and not underweight.
- Stratified at baseline by body mass index [normal :18.5-24.9, overweight: 25.0-29.9, obese ≥30.0 kg/m2] and metabolic risk.

Metabolic risk

- at least two of the following International Diabetes Federation abnormalities:
 - triglyceride ≥1.7mmol/l;
 - HDL cholesterol <1.0mmol/l (men), <1.3mmol/l (women)
 - blood pressure ≥130/85mmHg
 - fasting glucose ≥5.6mmol/l or self-reported diabetes;
 - treatment for these disorders.

- Dual energy x-ray absorptiometry (DXA) derived body composition was obtained at stage 2 on participants aged at least 50 yr.
Metabolic health was present in 67% of the population
Factors associated with obesity among the metabolically healthy

- Ages 40-54, 55-69
- Neighbourhood disadvantage
- Former smoking
- Low level physical activity
- Impaired quality of life
Factors associated with metabolic health among obese subjects

- female
- younger
- lower levels of waist circumference
- engaging in moderate to high level physical activity
- neighbourhood advantage
Adjusted OR (95% CI) for incident events in relation to BMI and metabolic status

Diabetes (4.9%, n=112)

- MH-OvW: 0.9
- MH-Ob: 2.21
- MR-NW: 2.45
- MR-OvW: 4.61
- MR-Ob: 8.04

CVD/stroke (6.3%, n=167)

- MH-OvW: 1.17
- MH-Ob: 1.16
- MR-NW: 1.17
- MR-OvW: 1.39
- MR-Ob: 2.24

<table>
<thead>
<tr>
<th>%</th>
<th>1.7</th>
<th>3.7</th>
<th>5.3</th>
<th>8.6</th>
<th>14.3</th>
</tr>
</thead>
<tbody>
<tr>
<td>%</td>
<td>5.2</td>
<td>4.7</td>
<td>8.5</td>
<td>8.8</td>
<td>10.7</td>
</tr>
</tbody>
</table>
Are BMI/metabolic phenotypes static?

<table>
<thead>
<tr>
<th>STAGE 1</th>
<th>Metabolic health</th>
<th>Metabolic risk</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>% (n)</td>
<td>% (n)</td>
</tr>
<tr>
<td>Metabolic health</td>
<td>% (n)</td>
<td>% (n)</td>
</tr>
<tr>
<td>BMI (n)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18.5-24.9</td>
<td>58.8</td>
<td>23.7</td>
</tr>
<tr>
<td>25.0-29.9</td>
<td>8.1</td>
<td>46.1</td>
</tr>
<tr>
<td>≥ 30.0</td>
<td>0.4</td>
<td>8.9</td>
</tr>
<tr>
<td>Metabolic risk</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18.5-24.9</td>
<td>28.8</td>
<td>9.6</td>
</tr>
<tr>
<td>25.0-29.9</td>
<td>3.6</td>
<td>17.3</td>
</tr>
<tr>
<td>≥ 30.0</td>
<td>0.3</td>
<td>3.8</td>
</tr>
</tbody>
</table>

33% of MHO developed metabolic risk
Maintenance of metabolic health

- occurred in 67% (n=188) of MHO participants
- associated with baseline variables:
 - younger age (< 40 yrs, OR, 95% CI =8.38, 2.13-33.0),
 - lower levels of waist circumference (OR per cm increase in waist circumference =0.97, 0.95-0.99)
 - low –middle quintiles of area level SES (2nd SEIFA IRSD quintile OR=2.34, 0.93-5.88, p=0.07; 3rd SEIFA IRSD quintile OR=2.72, 1.14-6.50 compared to the lowest quintile).
- No significant association with
 - physical activity
 - low/no risk alcohol consumption
 - smoking behaviour was observed
Incident diabetes and CVD in relation to change in status

- Stable MHO
 - incident diabetes (1.1%, n=2)
 - CVD/stroke cases (3.7%, n=7)
- progression from the MHO to the MRO
 - diabetes (8.3%, n=7, OR=14.1, 95% CI 2.82, 70.2)
 - not CVD/stroke events (7.0%, n=6, OR=2.19, 95% CI 0.72-6.67).
- stable MRO
 - diabetes: 18.5%, n=38, (OR=33.3, 95% % CI 7.8-143.3)
 - CVD/stroke: 13.7%, n=36, OR=4.1, 95% CI 1.9-8.9)
Mean* (SE) body composition in MHO and MRO females

<table>
<thead>
<tr>
<th></th>
<th>MH-NW (n=167)</th>
<th>MH-O(n= 86)</th>
<th>MR-O (151)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>61.3 (0.7)</td>
<td>60.1 (0.8)</td>
<td>62.0 (0.7)</td>
</tr>
<tr>
<td>Adiposity BMI</td>
<td>22.5 (0.1)</td>
<td>34.3 (0.5)</td>
<td>34.7 (0.3)</td>
</tr>
<tr>
<td>Waist (cm)</td>
<td>77.5 (0.6)</td>
<td>101.1*(0.8)</td>
<td>104.0 (0.6)</td>
</tr>
<tr>
<td>Fat Mass Index</td>
<td>7.5 (0.2)</td>
<td>16.5 (0.2)</td>
<td>16.0 (0.2)</td>
</tr>
<tr>
<td>% fat</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>32.9 (0.4)</td>
<td>47.8 (0.5)</td>
<td>46.5 (0.4)</td>
</tr>
<tr>
<td>Arm</td>
<td>33.8 (0.4)</td>
<td>48.9 (0.6)</td>
<td>48.4 (0.5)</td>
</tr>
<tr>
<td>Leg</td>
<td>38.7 (0.5)</td>
<td>53.2 * (0.7)</td>
<td>49.9 (0.5)</td>
</tr>
<tr>
<td>Fat free mass (FFM)</td>
<td>15.1 (0.1)</td>
<td>17.8 *(0.1)</td>
<td>18.3 (0.1)</td>
</tr>
<tr>
<td>Leg FFMI</td>
<td>4.5 (0.04)</td>
<td>5.3 (0.05)</td>
<td>5.3 (0.04)</td>
</tr>
<tr>
<td>Grip strength</td>
<td>26.0 (0.4)</td>
<td>26.9 (0.6)</td>
<td>25.3 (0.5)</td>
</tr>
</tbody>
</table>

*Adjusted for age and smoking
Conclusions

- “Healthy” obesity was a transient state for a third of subjects.
- Persistence of MHO was associated with younger age and a more peripheral fat distribution, with low diabetes and CVD risks.
- Development of metabolic risk in the MHO was associated with significantly increased diabetes risks.
- Longitudinal study of the MHO phenotype is important to identify a potential protective effect of peripheral fat distribution and avoid inappropriate health messages about the risks of obesity.
Acknowledgements

Government of South Australia
Department of Health

The Health Observatory

THE UNIVERSITY OF ADELAIDE
AUSTRALIA

NWAHS participants and clinic staff